Limit Theorems for Random Triangular Urn Schemes
نویسنده
چکیده
In this paper we study a generalized Pólya urn with balls of two colors and a random triangular replacement matrix. We extend some results of Janson (2004), (2005) to the case where the largest eigenvalue of the mean of the replacement matrix is not in the dominant class. Using some useful martingales and the embedding method introduced in Athreya and Karlin (1968), we describe the asymptotic composition of the urn after the nth draw, for large n.
منابع مشابه
Limit Theorems for Triangular Urn Schemes
We study a generalized Pólya urn with balls of two colours and a triangular replacement matrix; the urn is not required to be balanced. We prove limit theorems describing the asymptotic distribution of the composition of the urn after a long time. Several different types of asymptotics appear, depending on the ratio of the diagonal elements in the replacement matrix; the limit laws include norm...
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملA functional central limit theorem for a class of urn models
We construct an independent increments Gaussian process associated to a class of multicolor urn models. The construction uses random variables from the urn model which are different from the random variables for which central limit theorems are available in the two color case.
متن کاملCentral Limit Theorems for Generalized Pólya Urn Models
In this paper we obtain central limit theorems for generalized Pólya urn models with L ≥ 2 colors where one out ofK different replacements (actions) is applied randomly at each step. Each possible action constitutes a row of the replacement matrix, which can be nonsquare and random. The actions are chosen following a probability distribution given by an arbitrary function of the proportions of ...
متن کاملCentral limit theorems for a hypergeometric randomly reinforced urn
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracted balls of a certain color given the past is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009